Suboptimal Control for a Nonlinear System Using Neural Networks
نویسندگان
چکیده
منابع مشابه
Dynamic Sliding Mode Control of Nonlinear Systems Using Neural Networks
Dynamic sliding mode control (DSMC) of nonlinear systems using neural networks is proposed. In DSMC the chattering is removed due to the integrator which is placed before the input control signal of the plant. However, in DSMC the augmented system is one dimension bigger than the actual system i.e. the states number of augmented system is more than the actual system and then to control of such ...
متن کاملNonlinear System Control Using Neural Networks
The paper is focused especially on presenting possibilities of applying off-line trained artificial neural networks at creating the system inverse models that are used at designing control algorithm for non-linear dynamic system. The ability of cascade feedforward neural networks to model arbitrary non-linear functions and their inverses is exploited. This paper presents a quasi-inverse neural ...
متن کاملOptimal control for stochastic nonlinear singular system using neural networks
In this paper, optimal control for stochastic nonlinear singular system with quadratic performance is obtained using neural networks. The goal is to provide optimal control with reduced calculus effort by comparing the solutions of the matrix Riccati differential equation (MRDE) obtained from the well-known traditional Runge–Kutta (RK) method and nontraditional neural network method. To obtain ...
متن کاملFuel Cell Voltage Control for Load Variations Using Neural Networks
In the near future the use of distributed generation systems will play a big role in the production ofelectrical energy. One of the most common types of DG technologies , fuel cells , which can be connectedto the national grid by power electronic converters or work alone Studies the dynamic behavior andstability of the power grid is of crucial importance. These studies need to know the exact mo...
متن کاملrodbar dam slope stability analysis using neural networks
در این تحقیق شبکه عصبی مصنوعی برای پیش بینی مقادیر ضریب اطمینان و فاکتور ایمنی بحرانی سدهای خاکی ناهمگن ضمن در نظر گرفتن تاثیر نیروی اینرسی زلزله ارائه شده است. ورودی های مدل شامل ارتفاع سد و زاویه شیب بالا دست، ضریب زلزله، ارتفاع آب، پارامترهای مقاومتی هسته و پوسته و خروجی های آن شامل ضریب اطمینان می شود. مهمترین پارامتر مورد نظر در تحلیل پایداری شیب، بدست آوردن فاکتور ایمنی است. در این تحقیق ...
ذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEJ Transactions on Electronics, Information and Systems
سال: 1993
ISSN: 0385-4221,1348-8155
DOI: 10.1541/ieejeiss1987.113.6_394